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Lecture 28 

Physics 404 

The Landau theory of phase transitions is a very general treatment of first and second order 
phase transitions.  It posits the existence of an order parameter that is non-zero in the “ordered state” 
and zero in the “disordered state.”  Examples of order parameters include the magnetization (magnetic 
moment per unit volume) in the ferromagnetic state, superfluid density in the superconducting and 
superfluid states, electric polarization in the ferroelectric state, etc.  Landau proposed that the free 
energy of such systems can be expanded as a power series in the order parameter, in the absence of an 
external field, and for temperatures near the transition temperature, as; 𝐹𝐹𝐿𝐿(𝜉𝜉, 𝜏𝜏) = 𝑔𝑔0(𝜏𝜏) +
1
2
𝑔𝑔2(𝜏𝜏)𝜉𝜉2 + 1

4
𝑔𝑔4(𝜏𝜏)𝜉𝜉4 + 1

6
𝑔𝑔6(𝜏𝜏)𝜉𝜉6 + ⋯, where the temperature dependent coefficients will be given 

below.  This expansion converges quickly for |𝜉𝜉| ≪ 1. 

The coefficient 𝑔𝑔0(𝜏𝜏) describes the free energy versus temperature for the disordered state.  
The question is: can the system lower its free energy by developing an ordered phase, or not?  To 
describe a second order transition to an ordered phase, Landau proposed to simply make the factor 
𝑔𝑔2(𝜏𝜏) change sign at a critical temperature 𝜏𝜏𝑐𝑐  as 𝑔𝑔2(𝜏𝜏) = 𝛼𝛼(𝜏𝜏 − 𝜏𝜏𝑐𝑐), with 𝑔𝑔4(𝜏𝜏) = 𝑔𝑔4 and 𝛼𝛼 being 
positive constants.  Now take the derivative of the Landau free energy with respect to the order 

parameter, and keep terms to 4th order: 
𝜕𝜕𝐹𝐹𝐿𝐿(𝜉𝜉 ,𝜏𝜏)

𝜕𝜕𝜉𝜉
= 𝑔𝑔2(𝜏𝜏)𝜉𝜉 + 𝑔𝑔4𝜉𝜉3 = 0.  Setting this equal to zero leads 

to an equation for the equilibrium value of the order parameter that minimizes the free energy:  
𝜉𝜉0(𝛼𝛼(𝜏𝜏 − 𝜏𝜏𝑐𝑐) + 𝑔𝑔4𝜉𝜉0

2) = 0.  There are two solutions: 𝜉𝜉0 = 0 and 𝜉𝜉0
2 = 𝛼𝛼(𝜏𝜏𝑐𝑐−𝜏𝜏)

𝑔𝑔4
.  The second solution 

makes sense only if 𝜏𝜏 < 𝜏𝜏𝑐𝑐  since otherwise the order parameter would be an imaginary number.  Below 
𝜏𝜏𝑐𝑐  the order parameter has a non-zero equilibrium value, thus describing the ordered phase.  This can 
be seen by going back to the free energy and substituting in the second solution: 𝐹𝐹𝐿𝐿(𝜉𝜉, 𝜏𝜏) ≈ 𝑔𝑔0(𝜏𝜏) −
𝛼𝛼2

2 𝑔𝑔4
(𝜏𝜏 − 𝜏𝜏𝑐𝑐)2, valid for 𝜏𝜏 < 𝜏𝜏𝑐𝑐 .  This shows that the free energy of the ordered phase decreases below 

that of the disordered phase for temperatures below 𝜏𝜏𝑐𝑐 .  The slope of the free energy versus 
temperature is proportional to the entropy, and the entropy of the two phases are equal at 𝜏𝜏𝑐𝑐 , so there 
is no latent heat at the transition.  The figures below show the free energy as a function of the order 
parameter value at various temperatures, and also show the value of the order parameter that 
minimizes the free energy at each temperature. 
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 The order parameter is predicted to show a square-root temperature dependence near 𝜏𝜏𝑐𝑐 :          
𝜉𝜉0~�𝜏𝜏𝑐𝑐 − 𝜏𝜏, which is consistent with experiments on many 2nd order phase transitions, including those 
on ferromagnets, superconductors, superfluids, etc. 

The Landau theory can also describe first order phase transitions by simply changing the sign of 
the 4th order term and retaining a positive 6th order term: 𝐹𝐹𝐿𝐿(𝜉𝜉, 𝜏𝜏) = 𝑔𝑔0(𝜏𝜏) + 𝛼𝛼

2 
(𝜏𝜏 − 𝜏𝜏𝑐𝑐)𝜉𝜉2 −

1
4
𝑔𝑔4(𝜏𝜏)𝜉𝜉4 + 1

6
𝑔𝑔6(𝜏𝜏)𝜉𝜉6 + ⋯.  Minimizing the free energy with respect to variations in the order 

parameter value leads to a quartic equation that yields a phase transition at a temperature 𝜏𝜏0.  The 
difference from the second order case is that the order parameter does not increase continuously from 
zero, but in fact appears discontinuously, as shown in the figure below.  There is a latent heat associated 
with this phase transition.  An example order parameter is the difference in density of the liquid and 
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vapor phases, 𝜌𝜌𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜌𝜌𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 .  Note that this order parameter goes to zero at the critical point in the 
phase diagram. 

 

 

 In general order parameters do not have to be real numbers.  They can be complex numbers, 
vectors, tensors, etc.  Nature has developed many subtle types of order that are described by these 
more complicated order parameters, and there associated phase transitions.  

 We next briefly discussed kinetic theory, which is the classical approach to understanding 
thermodynamics starting from the dynamics of individual molecules.  Following the first few pages of 
Chapter 14, we examined the collision of a single molecule with a wall of a container, which is the 
elementary process that gives rise to pressure.  By proposing a distribution function for the velocities of 
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the molecules we were able to derive the ideal gas law 𝑃𝑃𝑃𝑃 = 𝑁𝑁𝜏𝜏, using only the concept of equipartition 
of energy. 

The velocity distribution function was calculated by ‘deconstructing’ the quantum solution for 
the ideal gas from Chapter 6.  By converting from quantum number ‘𝑛𝑛’ to classical speed ‘𝑣𝑣’ we were 
able to calculate the distribution of speeds for molecules of mass 𝑀𝑀 at temperature 𝜏𝜏 as 𝑃𝑃(𝑣𝑣) =

4𝜋𝜋 � 𝑀𝑀
2𝜋𝜋𝜏𝜏

�
3/2

𝑣𝑣2𝑒𝑒−𝑀𝑀𝑣𝑣2/2𝜏𝜏 , which is called the Maxwell velocity distribution.  There are several applets on 

the class web site that illustrate how quickly a gas of classical particles held in a box will adopt this speed 

distribution.  The root-mean-square velocity is 𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟 = 〈𝑣𝑣2〉1/2 = �3𝜏𝜏
𝑀𝑀

.  The rms speed of oxygen 

molecules at room temperature is about 460 m/s. 


